Knowledge for better food systems

Showing results for: Nitrogen

Photo: U.S. Department of Agriculture, 20130712-AMS-LSC-0415, Flickr, CC by 2.0
13 November 2017

This paper presents the findings of a food systems model that considers how specific agronomic characteristics of organic agriculture could be harnessed so as to enable it to play a greater role in sustainable food systems.

Photo: United Soybean Board, Soil, Flickr, Creative Commons License 2.0
13 July 2017

In this short perspective piece, researchers from the Netherlands, USA and the UK critically assess the COP21 4 per 1000 initiative, which seeks to increase global yearly agricultural soil organic carbon sequestration by 4‰ (= 0.4%, or 1.2 billion tonnes). The authors argue that as soil organic matter (SOM) also contains nitrogen (N), with a C-to-N ratio always approaching 12, this will require the sequestration of an extra 100 million tonnes of N per year, and they question the feasibility of achieving this. 

Photo: mrskyce, Nitrogen!, Flickr, Creative Commons License 2.0 generic.
7 June 2017

This paper proposes a solution to the problems associated with the high inefficiencies and indirect detrimental environmental impacts caused by reactive nitrogen use in agriculture.The researchers suggest that land-based agriculture could be bypassed and that Haber Bosch derived nitrogen could be used directly for reactor based microbial protein production. The advantages of microbial protein production are summarised, as are the opportunities and technical challenges for large-scale production. The authors emphasise that, aside from the scientific innovation required, the main challenge to address is obtaining acceptability from regulators and consumers.

31 January 2017

This paper examines high-resolution, crop-specific GHG emissions and GHG intensity estimates which are derived using a method that couples biophysical models with novel 5-arc-minute resolution data.

Photo credit: Analia Bertucci, USDA NRCS, Flickr, Creative Commons License 2.0
15 December 2016

In this paper, the authors present an analysis of the nitrogen cycle in the agricultural production system of 12 world regions. From these results, they go on to suggest improvements in nitrogen use by changing the role of human diet, international trade and local production.

Photo credit: Chris Booth, Flickr, Creative Commons License 2.0
29 November 2016

The World Bank has released a short working paper arguing that the expansion of seaweed farming in tropical developing countries could have large positive impacts on local poverty, ecosystem management and climate change mitigation. The report goes through different benefits and uses of seaweed production and briefly discusses current and potential markets for the crop.

Photo: Flickr, Gene Alexander, U.S. Department of Agriculture, Creative Commons License 2.0
16 September 2016

The need to make the best use of agricultural land in the face of growing future demand has made sustainable intensification an important area of food systems research. Previous research which focused on this topic, looked at the spatial distribution of the intensity of agricultural production and how this has changed, but according to the authors, did not provide sufficient insight into the drivers of intensification patterns, especially at subnational scales.

Photo: Natural resources conservation service (Flickr, creative commons 2.0)
9 June 2016

This paper looks at how soil can help contribute to climate mitigation.  It argues that by decreasing greenhouse gas emissions, sequestering carbon and using prudent agricultural management practices that improve the soil-nitrogen cycle (tighter cycle with less leakage), it is possible to enhance soil fertility, bolster crop productivity, improve soil biodiversity, and reduce erosion, runoff and water pollution.

3 February 2016

This report by Compassion in World Farming highlights the so-called “negative externalities” associated with livestock-based food production – that is, costs to human health and the environment that are borne by society as a whole and which are not accounted for by the cost of producing the food or the price of consuming it.

3 February 2016

This report quantifies the losses of reactive nitrogen from EU agriculture and food systems by food type, and assesses the impact of alternative diets (especially reduced meat) on the environment (through nitrogen emissions, greenhouse gas emissions and land use) and human health. Reactive nitrogen losses associated with agriculture refer mainly to the release of ammonia and nitrous oxide into the air, and nitrates into the ground. Nitrous oxide is a powerful greenhouse gas, and nitrate excesses in soil can lead to water pollution.

17 December 2015

Meat and dairy consumption have increased globally over the past fifty years. As livestock account for 80% of agriculture’s total greenhouse gas (GHG) emissions, this article argues that to achieve climate targets, humans need to change their dietary habits.

9 November 2015

On October 28 2015 the European Parliament voted for binding targets on emissions of air pollutants with specific targets set for 2020, 2025 and 2030. The bill originally included ammonia and methane (CH4) among other air pollutants – but the Members of the European Parliament (MEPs) voted to exempt enteric methane emissions (emissions directly from farmed animals) from the bill. Setting targets for enteric methane was instead postponed to 2030, to give the agriculture sector time to adapt.

3 September 2015

This paper reviewed data from six national studies to quantify food waste within the EU and its associated loss of water and nitrogen resources in the EU as well as the uncertainties of these values.

Pages