Knowledge for better food systems

Showing results for: Climate change: Mitigation

Climate mitigation mitigation involves actions aimed at limiting the amount of greenhouse gases in the atmosphere. This may consist in reducing anthropogenic emissions or by increasing the capacity of carbon sinks. Food systems contribute some 20-30% of total global anthropogenic greenhouse gas emissions and their impacts will need to be addressed if substantial global climate change mitigation is to be achieved. In agriculture, management and breeding methods for mitigation of climate change are being developed for all regions. However, not only technological change, but also changes in demand (away from emission intensive foods such as meat and dairy), and in enabling socio-economic structures and the governance framework will influence the amount of GHGs emitted in the future. In the food system, there is scope to develop new practices which deliver multiple win-wins – for example, that function both as climate change adaptation and as mitigation strategies (e.g. climate resilient crops that also bind more carbon in the soil) or that deliver non environmental benefits – for example where shifts to lower environmental impact diets also improve nutritional wellbeing.

Image: trf57, Sheep New Zealand, Pixabay, CC0 Creative Commons
12 September 2018

New Zealand’s Parliamentary Commissioner for the Environment has released a report exploring how much and over what timescale the climate is affected by methane emissions from livestock. It focused on two questions. First,if methane emissions from livestock were held at current levels or followed business-as-usual trajectories, what would their contribution to future warming be? Second, what reduction in methane emissions from livestock would be needed so that they cause no additional contribution to warming?

Image: C.G. Newhall, Pyroclastic flows at Mayon Volcano, Philippines, 1984, Wikimedia Commons, Public domain
20 August 2018

A recent paper uses data from volcanic eruptions to estimate the effects that geoengineering with sulphate aerosols would have on agricultural production. It concludes that the damage that geoengineering would do to maize, soy, rice and wheat outputs (because of reduction in sunlight reaching the crops) would have roughly the same magnitude as the benefits of the cooling it would provide.

Image: Pixabay, Dominoes barricade, CC0 Creative Commons
20 August 2018

Researchers have warned that a cascade of positive feedback loops could push global temperatures into a “Hothouse Earth” state for millennia, even if human greenhouse gas emissions are reduced. Some systems, such as ice sheets, forests and permafrost, could pass a temperature tipping point beyond which they rapidly become net contributors to climate change. If one is set off, the warming produced could trigger the remaining tipping points, like a line of dominoes.

17 July 2018

The Centre for Ecoliteracy, a Californian non-profit, has produced a free interactive guide to understanding food and climate change, covering both how climate change affects the food system and how the food system contributes to climate change.

Image: Lamiot, Coppice short rotation willow, Wikimedia Commons, Creative Commons Attribution 3.0 Unported
10 July 2018

In a guest post for Carbon Brief, Professor Pete Smith of the University of Aberdeen discusses recent research on how climate mitigation through negative emissions could affect biodiversity, through changes in land use. He argues that bioenergy with carbon capture and storage (BECCS) should be implemented sooner rather than later, because of the risk of not meeting climate mitigation targets if BECCS is left until later in the century and because a study estimated that natural land loss could be lower if BECCS is deployed earlier in the century.

Image: Tony Atkin, Path Through Miscanthus, Geograph, Creative Commons Attribution-ShareAlike 2.0 Generic
26 June 2018

The Hoffmann Centre at UK think tank Chatham House has produced a summary of a workshop held in January 2018 on policy implications of widespread deployment of negative emissions technologies. The workshop concluded that bioenergy with carbon capture and storage (BECCS) cannot be used at the scale assumed in emissions pathways compliant with the Paris agreement, because it would cause large land use change in regions of high biodiversity and compete with food production for land. Nevertheless, some BECCS may be needed. Direct air capture would use less land than BECCS, but there are economic and technical barriers.​

Image: Lisa.davis, A vegetarian Indian Thali, Wikipedia, Creative Commons Attribution-Share Alike 2.0 Generic
30 April 2018

The authors of this paper calculate the carbon footprint of various recommended healthy diets around the world and find that most recommendations are inconsistent with the 1.5°C climate target, and are probably also inconsistent with the 2.0°C target unless non-food sectors almost completely cut their carbon emissions by 2050. Annual per capita diet-related carbon footprints vary from 687 kg CO2 eq. for Indian vegetarian dietary guidelines to 1579 kg CO2 eq. for US dietary guidelines.

Image: Tom Driggers, Imported!!, Flickr, Creative Commons Attribution 2.0 Generic
24 April 2018

173 countries have agreed to halve emissions from the global shipping industry by 2050, compared to 2008 levels, in a non-binding deal arranged by the International Maritime Organisation. Saudi Arabia, the US and several other countries raised objections to the proposed emissions cuts. Shipping was not covered by the 2015 Paris agreement on climate change.

24 April 2018

A report from the National Academies of Sciences, Engineering, and Medicine summarises a webinar and workshop that addressed the current state of knowledge on managing land to remove carbon dioxide from the atmosphere, the research needed for predicting the relevant impacts of land use change and management practices and the state of knowledge on policies, incentives, and socio-economic constraints on terrestrial carbon sequestration activities.

Image: Martin Bjørnskov, Marbæk, Flickr, Creative Commons Attribution 2.0 Generic
23 April 2018

A new paper finds that a range of “ambitious but not unrealistic” climate mitigation options could, together, mean that using bioenergy with carbon capture and storage (BECCS) is not necessary for staying within 1.5°C of warming. Mitigation options considered include limiting population, lower meat consumption and use of lab-grown meat, lifestyle changes such as lower car use, electrification of energy end-use sectors, high efficiency manufacturing, agricultural intensification and mitigation of non-CO2 greenhouse gases.

10 April 2018

The Cities & climate change science conference event was held in Edmonton, Alberta on 5-7 March. Recordings of some of the sessions are available here.

Image: Magnascan, Flame, Pixabay, Public Domain
10 April 2018

A recording of the webinar “Methane and global warming in the 21st century” by Bob Howarth of Cornell University is available here.

Image: CIAT, NP Himachal Pradesh 68, Flickr, Creative Commons Attribution-ShareAlike 2.0 Generic
12 March 2018

This paper calculates country-level mitigation targets for agricultural non-CO2 greenhouse gases (GHGs) based on a variety of allocation methods. This study claims to be the first to calculate national mitigation contributions for the agricultural sector that are consistent with meeting the 2°C target.

6 March 2018

This report by the Meridian Institute brings together existing information about climate change impacts and opportunities for climate adaptation and mitigation into a food systems framework.

13 February 2018

The Intergovernmental Panel on Climate Change (IPCC) has brought out a handbook to help its scientists communicate climate change issues effectively.

13 February 2018

A report by the European Academies’ Science Advisory Council finds that negative emissions technologies (NETs) have ‘limited realistic potential’ and cannot be relied upon to remove carbon at the rate envisaged in the Intergovernmental Panel on Climate Change (IPCC) scenarios for avoiding dangerous climate change.

Image: Cazz, Terraced rice paddies, Flickr, Creative Commons Attribution 2.0 Generic
1 February 2018

A Climate Action Tracker report outlines and quantifies the main opportunities to reduce food-related non-CO2 greenhouse gas emissions, particularly CH4 and N2O.

Pages