Knowledge for better food systems

Showing results for: Carbon footprinting

The carbon footprint is a consumption-based indicator used to highlight the climate impacts of a certain good or service. Carbon footprinting is based on the life cycle assessment (LCA) approach but focuses only on greenhouse gas emissions, rather than a suite of environmental areas. The “size” of the footprint is usually expressed in terms of carbon dioxide equivalent (CO2e). The footprint analysis considers impacts along several or all the stages of a product’s life cycle, which may span agricultural production (and the inputs to this production) through to consumption and waste disposal. The footprint approach can be used to measure the carbon impact of food at various scales; from the individual food product, to an entire meal, through to a dietary pattern of an individual or a country. Carbon footprinting may simply be undertaken by a company in order to understand the impacts of the products it sells and ascertain opportunities for improvement, but information about a product's footprint is also occasionally included on packaging in the form of a consumer-oriented label.

17 July 2018

This book, by Klaus Lorenz and Rattan Lal, discusses the present state of knowledge on soil carbon dynamics in different types of agricultural systems, including croplands, grasslands, wetlands and agroforestry systems. It also discusses bioenergy and biochar.

17 July 2018

The UK’s Committee on Climate Change has released its 2018 Progress Report to Parliament on Reducing UK Emissions. Chapter 6 focuses on agriculture and land use, land-use change and forestry. The report finds the UK agricultural emissions were unchanged between 2008 and 2016. In 2017, half of farmers did not think it was important to consider emissions when making decisions about farming practices. The forestry sector’s ability to sequester carbon has levelled off due to the average age of trees increasing relative to the past. Chapter 6 makes only passing reference to demand-side measures for agricultural emissions reductions (see Figure 6.9).

Image: sarangib, Oil Palm Tree, Pixabay, CC0 Creative Commons
17 July 2018

A recent paper assesses the carbon implications of converting Indonesian rainforests to oil palm monocultures, rubber monocultures or rubber agroforestry systems (known as “jungle rubber”). It finds that carbon losses are greatest from oil palm plantations and lowest from jungle rubber systems, in all cases being mainly from loss of aboveground carbon stocks. The paper points out that, “Thorough assessments of land-use impacts on resources such as biodiversity, nutrients, and water must complement this synthesis on C but are still not available.”

Image: Charles Haynes, Dosa (rice pancake) with a cup of ghee (clarified butter) at Mavalli Tiffin Room in Bangalore, Wikimedia Commons, Creative Commons Attribution-Share Alike 2.0 Generic
17 July 2018

FCRN member Dr Rosemary Green of the London School of Hygiene & Tropical Medicine has published a paper that calculates the greenhouse gas (GHG) emissions and water use associated with five dietary patterns in India. As shown below, GHG emissions per capita are highest for the “rice and meat” dietary pattern (at 1.2 tonnes CO2 eq. per year) and lowest for the “wheat, rice and oils” pattern (at 0.8 tonnes CO2 eq. per year). For comparison, per capita dietary GHG emissions in the UK have been estimated at 2.6 tonnes CO2 eq. per year for high meat eaters and 1.1 tonnes CO2 eq. per year for vegans (Scarborough et al., 2014). Water use is highest for the “wheat, rice and oils” pattern and lowest for the “rice and low diversity” pattern.

Image: Tobias Akerboom, Complaining cow, Flickr, Creative Commons Attribution 2.0 Generic
10 July 2018

A paper proposes a new method for evaluating the climate impact of short-lived greenhouse gases (GHGs) such as methane. Different GHGs are currently assessed on the basis of global warming potential (GWP), calculated as carbon dioxide equivalent, usually over a 100 year time horizon. The paper authors say that this misrepresents the impact of short-lived GHGs, because they have stronger climate impacts shortly after being released and lower impacts after being in the atmosphere for some time.

Image: K-State Research and Extension, Cattle feedlot, Flickr, Creative Commons Attribution 2.0 Generic
26 June 2018

FCRN member Martin Heller of the Centre for Sustainable Systems at the University of Michigan has calculated the greenhouse gas emissions (GHGEs) and energy demand associated with the diets of individuals in the US, based on a one day dietary recall survey. The highest-emitting 20% of diets are responsible for 46% of diet-related GHGEs, while the lowest-emitting 20% of diets cause 6% of diet-related GHGEs. The food types causing the highest percentage of GHGEs are meats (57%), dairy (18%), beverages (6%) and fish and seafood (6%).

Image: Pxhere, dish food cooking, CC0 Public Domain
26 June 2018

This paper estimates greenhouse gas emissions (GHGEs) associated with the food purchased by US households (based on survey data) and examines the links between food GHGEs and demographic factors. It suggests that education on the links between food and climate could be targeted at more educated and more affluent consumers, since their research shows (see below) that the these households have more GHGE-intensive dietary patterns.

Image: William Warby, Cow in a field by the quad biking place in Devon, Flickr, Creative Commons Attribution 2.0 Generic
11 June 2018

The FCRN’s Tara Garnett is featured in this video by UK climate website Carbon Brief, which discusses how farmers could reduce the carbon footprint of beef production. Tara points out that production-side measures only go so far, and that consumption changes are needed as well.

24 April 2018

A report from the WWF examines the environmental impacts, including carbon footprint, associated with four classic British dishes, and identifies twenty risks that climate change poses to the production of these dishes.

Image: Magnascan, Flame, Pixabay, Public Domain
10 April 2018

A recording of the webinar “Methane and global warming in the 21st century” by Bob Howarth of Cornell University is available here.

Image: USDA, k9515-1, flickr, Creative Commons Attribution 2.0 Generic
19 March 2018

In this paper, researchers from the Joint Research Centre of the European Commission investigate the extent to which variation in nitrous oxide (N2O) emissions may offset or enhance the mitigation effects of carbon sequestration in arable European soils. They employ a biogeochemical model with input data from ~8000 soil sampling locations to quantify CO2 and N2O flux associated with different agricultural practices aimed at carbon (C) mitigation.

Image: Andiseño Estudio, volcano-eruption-calbuco-chile-8__880, Flickr, Public domain
26 February 2018

Using volcanic rock dust as a fertiliser on farms could offset around one tenth of global greenhouse gas emissions, according to preliminary estimates.

Photo: Neil Palmer, CIAT Nicaragua, Flickr Creative commons licence 2.0  generic
1 June 2017

In this information note from the CGIAR programme on Climate change, Agriculture and Food security (CCAFS), researchers present a rough estimate of the proportion of global agricultural emissions that can be attributed to smallholder farmers in developing countries.

Photo: Joshua Mayer, Forest, Flickr, Creative Commons License 2.0 generic.
1 June 2017

This paper takes countries’ mitigation targets (Intended National Determined Contributions, or INDCs), submitted since the Paris Climate agreement, and, using supplementary information from other official documents, quantifies how much of the promised actions are related to Land Use, Land Use Change and Forestry (LULUCF, primarily deforestation and forest management). 

Photo: S Khan, Shrimps, Flickr, Creative Commons License 2.0 generic.
16 May 2017

This research calculates the carbon footprint of a meal to give a tangible example, aimed at the public in the US, about how daily food decisions can affect deforestation and greenhouse gas emissions (GHGe). The study uses a life-cycle assessment (LCA) approach that takes into account GHGe arising from the conversion of mangrove to cattle pastures and mangrove to shrimping ponds as well as from forests to pasture (cattle induced deforestation). 

Pages