Knowledge for better food systems

Showing results for: Production efficiency/intensity

26 May 2020

This policy briefing from US think tank The Breakthrough Institute lays out options for post-COVID-19 stimulus spending in the United States. It suggests funding farm conservation programmes that could improve farmer profitability, generate jobs, and improve environmental performance. It also proposes nationally scaling up farm machinery rebate systems, which exist in a few states, to encourage the purchase of efficient agricultural equipment.

10 February 2020

This blog post, by Caroline Grunewald and Dan Blaustein-Rejto of the Breakthrough Institute (a US think tank), argues that the large scale of much American farming does not mean it is necessarily unsustainable - rather, when looking at the intensity of greenhouse gas emissions, land use and water use per unit of output, dramatic improvements have been seen since 1961.

19 November 2019

The UK’s Countryfile TV programme has featured research by the Centre for Agroecology, Water and Resilience (CAWR) at Coventry University, which is using farm-based trials to study whether feeding biochar (a form of charcoal) to cattle can reduce their emissions of methane and ammonia.

29 October 2019

The book Food for All in Africa: Sustainable Intensification for African Farmers argues that the way forward for African agriculture is to produce greater yields with fewer inputs such as fertilisers and pesticides.

29 October 2019

The 2019 edition of the Global Agricultural Productivity Report from Virginia Tech University emphasises the systemic nature of the many challenges facing food, health and environment and calls for increased agricultural productivity as a way of meeting future food demand sustainably.

18 September 2019

This report sets out the plans of the UK’s NFU (National Farmers Union) to make emissions from agriculture in England and Wales net zero by 2040. It calls for collaboration between farmers, government and NGOs to reduce emissions through improved production efficiency, carbon capture through land management, and bioenergy with carbon capture and storage (BECCS).

22 July 2019

FCRN member Peter Alexander has co-authored this paper, which finds that incremental improvements in several areas of the food system (including production efficiency, reducing food waste and changing diets) could reduce agricultural land use by between 21% and 37%, depending on adoption rates. 

17 June 2019

Methane emissions from ammonia fertiliser manufacturing plants (which use natural gas as a feedstock and energy source) in the United States are around one hundred times higher than currently reported levels, according to this study. Researchers used a Google Street View car equipped with methane analysers to take measurements downwind of six ammonia fertiliser plants (there are only 23 such plants in the US).

16 April 2019

This paper traces mass, energy flows and emissions in the beef, poultry and pork supply chains in Germany (including all emissions from the animal production stages, and emissions from energy use at subsequent stages). It outlines the potential of different strategies to reduce consumption-based emissions. It finds that the greatest emissions reductions could come from dietary change, i.e. replacing some meat consumption with consumption of soybeans and nuts, or replacing some meat consumption with offal consumption.

26 March 2019

This paper assesses the agricultural water use efficiency of different food types based on their nutrient content, instead of the conventional approach of assessing water use in terms of litres used to produce a certain weight of food. The purpose of the study is to determine whether higher intakes of nutrient-rich foods such as fruit, vegetables and seeds might conflict with the aim of minimising agriculture’s water use.

20 March 2019

In this paper, FCRN member Nicholas Bowles of the University of Melbourne reviews existing data on the environmental impacts of the livestock sector and considers these impacts in the context of planetary boundaries. The paper reports that efficiency alone is unlikely to be adequate to shrink livestock’s impacts to a sustainable level, and that dietary shifts will also be necessary.

26 February 2019

The UK’s Food and Drink Federation (FDF) has published its 2018 environmental progress report. FDF members report a 53% reduction in their greenhouse gas emissions from energy use in manufacturing operations since 1990, and a 39% reduction in water consumption since 2008.

11 February 2019

This report from Food and Agriculture Organisation of the United Nations and the Global Dairy Platform shows the global dairy sector’s greenhouse gas emissions and outlines the measures the sector could take to contribute to climate change mitigation.

29 January 2019

The UK’s Global Food Security programme has published a report on innovation within the UK food systems, focusing particularly on the contribution of data technologies and artificial intelligence to food security.

12 November 2018

In a column for the Guardian, George Monbiot writes about the potential to create food without plants, animals or soil, using instead bacteria that feed on hydrogen (generated by solar-powered electrolysis of water) and carbon dioxide from the air. Monbiot argues that this form of food production could eventually drastically reduce the amount of land needed for the global food supply chain, and suggests that the new foodstuff could be used as an ingredient in processed foods.

16 October 2018

California agritech startup Iron Ox has unveiled an “autonomous farm”, where robots move plants and transplant them from one stage to the next. Artificial intelligence controls pests and diseases and adjusts growing conditions. The farm is not entirely automated, as humans still sow seedlings and package the harvested crops. The farm produces leafy greens and herbs.

24 July 2018

This review paper reports that organic agriculture has lower yields than conventional agriculture, by 19-25% on average across all crops, according to three meta-analyses. Lower yields may be due to the lack of use of synthetic fertilisers - organic systems are often limited by low levels of nitrogen or phosphorus - and higher susceptibility to pest outbreaks. Widespread uptake of organic farming (to produce the same amounts of output as today) would probably require some conversion of natural habitats to farmland, because of this lower land-use efficiency compared to conventional agriculture - an important consideration, as the area of certified organic production has increased from 15 million ha in 2000 to 51 million ha in 2015 (although this is only 1% of agricultural land).

Pages